
r -

I AD *073 086 MITRE CORP BEDrORD MA flG V2
ERROR CORRECTION CODING 11114 P11405 MICROPROCESSORS : VOLUME II. A——ETC (U)
NAY 79 .1 A liPMAL.AIPCN. £ N SkOOG F19628—78—c—000jI UNCLASSIFIeD Nfl—MiS—VOL—a £SO—YR—79—125—VOL—2 II.

_ t U DO
18

END
D A T E

F I L M E ~~

9
;
79

I

L

U i f ’ L~ II~2~~ L25
I.v L~

_ _

L L 2.2
____ •

~

I I ~

o~o ‘ .25
~~~~~~~~~~~~

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STA NOARDS-1963-A



ESD—TR—79—125, Vol. II MTR—36 18, Vol. II

ERROR CORRECTION CODING WITH NMOS MICROPROCESSORS :
A 8800-BASED 7,3 REED-SOLOMON DECODER

—,

J.R.  HAMA LA INEN AND ERIC N. SKOOG

C~ ~J . . ~~~~ JMAY 1979

t~
.

- Prepa ted for

DEPUTY FOR DEVELOPMENT PLANS
ELECTRONIC SYSTEMS DIVISIO N
AIR FORCE SYSTEM S~ COMMAND

UNITED STATES AIk FORCE
Hanscom Air Force Rase, Massachusetts

__ D D C

~~~~
J*

1!
~~~~~~~~~~~~~~ L

AuG
~~~~~~~~~

.

Project No. 7010
Prepared by

THE MI TRE CORPOR ATION
Approved for public rs$s.a.; Bedford, Massachusetts
dt$trlbutlOn Uflhimsted .

~~~~

‘ 

Contract No. F19628-78-C -0001

I _ 
______

_  _  _  

411— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - .s ’-

~~~~~
— ‘~~~ 

- 
. 

— . 
~ ________ —- - —~~ - -



$

When (iS. Government drawings, specifications,
or other data ore used for any purpose other
than a def initelV related government procurement
operation, the government thereby incurs no
responsioilut v nor any obligation whatsoever; and
the fact that the government may have formu

lated, furnished, or in any way supplied the said
drawings, specifications, or other data is not to be -

regarded by implication or othe”wise , as in any
manner licensing the holder or any other person
or corporation, or conveying any rights or per-
mission tc manufacture, use, or sell any patented
invention that may in any way be related thereto.

Do not return this copy . Retain or destroy.

REVIEW AND APPROVA L

This technical report has been reviewed and is approved for publication .

a.~i# ~i~.LL11~t _ _ _ _ _ _ _ _

PAUL i f .  WENDZI1~3WSKI , Capt, USA? WILLIAM M. SMITH, J r . ,  C , USA?
Project Officer Director , Technological and

Functional Area Planning
Deputy for Development Plans

_ _ _ _ _ _ _  

-

ERN!ST L. HATCEELL JR. ,  Colonel , USAF
Assistant Deputy for Development Plans 

,—-— -

- -- ——---- _____________________________
- - , ~~---~ 

~~~~~~ 1 ~~ —~~ ------ —~~~~ — - -,-— —


UNC LASSIFIE D
SeCURITY SIFICAT IOP4 OF THIS PAG E (WR en Data Eni.red)

~~~~~~~~

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
________________________________________________ BEFORE COMPLETING FORM

‘P a -c~~’
-’~

’ ~~~~II 1lStl 3. iFii?’ t ~~~~~~~~ 
— -

— -79-125 -- Volj~. 12 ~~ ~~~~~ 
~~~~~~~~ 
I

I. .1111-C (and SubiHJaS

~~

~~

ERROR

~~

ORRECTION

~~

ODIN

~~~

qTH li~1c~ 
~~‘ TYPI or ~ EPO RT $ PERIOD cov EREd

~~~ICROPROCESSORS: ~~ 68fi~-~ASE~~~~~~” 
(

I $

J
~~~B~~~~~~~~BER

S -
_‘7
~,_3 REED-SOLOMON~~ECODER.’_- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

7. ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ r ~~~ .AIIT UUM5~~~~S)

~IJ.R. 1HamaIainii~1

~Ei~cLfSkoog J (
~~ ~~~~~~

878
:~~~~~~~

9. PERFORMING ORGAN IZAT ION NAM E AMP ADDRESS t O. PROGRAM ELEMENT, PROJECT , TASK

The MITR E Corporation / AREA & WORK UNIT NUMBERS

Project No. 7010P.O. Box 208
Bedford , MA 01730 ___________________________

Deputy for Development Plans T May
II. CONTROLL ING OFFICE NA ME AND ADDRESS ~ 2- ~~~~~~~~~~~~

Electronic Systems Division , A FSC
Hanscom AFB, MA 01731 60

14. MONITORING AGENCY NAME C ADDRESS if rent iron, Controlling Of fice)  IS. SEC.URIrY CLASS. (of thu r.poft)

ISa . DECLASSIFICATION/DOWNGRADING

UNCLA SSIFIED

SCHEDULE

19. DISTRIIUTION STATEMENT (of this Report)

Approved for public release ; distribution unlimited.

17. OISTRIBUTION STATEMENT (of 1,. ab.t,act entere d in Block 20, ii different from Report)

I —-

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continu, on rev.,., aid. II n.c.eeary end identify by block numb.r)

ERROR CORRECTION CODING
MICROPROCESSORS
REED-SOLOMON CODE

2~. A BSTRACT (Conii nu. on revere. sad. if nec.s.ary and id.ntit, ’ by block nus~ber)

Design, operation and testing of a table-look-up microprocessor-based (Motorola
MC6800) (7 ,3) Reed-Solomon decoder is present3d. Decoder operation is fully
illustrated by the use of error and erasure pa ttern examples. Exhaustive (complete)
and random (Mon te Carlo ) testing is employed to exercise the decoder. ibet
results are analyzed and conclusions drawn relative to decoder performance .~~~

DD ~~~ ‘~473 EDITION OF I NOV 93 IS OBSOLETE UNCLASSIFIED
‘~~~ “ ‘~~Y CLASSIFICATInW r e  ‘i’ , .. — .  - - 

- .—.-. - ,. ,- ~, - . . - -., ~~~~~~~~~~~~~~~~ - - -~~~~~~~~ -

- ... ~~ — _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _- ~~~~~~~~~~~ ~ v—’.~~~

-
~~—— --—--— ----— .. — -.—— - -— - _____________



C

ACKNOWLEDGMENT

This report has been prepared by The MITRE Corporation under
Project No. 7010. The contract is sponsored by the Electronic Systems
Division , Air Force Systems Command , Hanscom Air Force Base,
Massachusetts.

The authors gratefully acknowledge the hardware support

contributed by R. A. Gamache and J. E. Tolliver , as well as
the excellent programming assistance provided by R. Drury,
C. E. Pearson , and J. Thrzakls dur ing the design, construction ,
and testing of the decoder.

1 

- 

I 

-- -

. 
~~~~~~~~~~~~~ - -

..
-- - -

TABLE OF CONTENTS

L.
Secti on Page

LIST OF ILLUSTRATIONS 5

LIST OF TABLES 5

INTRODUCTION 6

1.1 PURPOSE 6
1.2 BACKGROUND 6
1.3 SCOPE 7

2 DECODER IMPLEMENTATION 8

2.1 DECODER HARDWARE 8
2.2 DECODER SOFTWARE 13

2.2.1 (7 ,3) R-S Code Representation 13
2.2.2 The Decoding Algorithm 17

2.3 DECODER OPERATION 23

2.3.1 Example 1 - No Errors and Erasures 24
2.3.2 Example 2 - Five Erasures 27
2.3.3 Example 3 - Two Errors 29
2.3.4 Example 4 - One Error and Two 31

Erasures
2.3.5 Example 5 - Th ree Errors 33
2.3.6 Example 6 - Three Errors and Two 35

Erasures

3 DECODER TESTING 37

3.1 DECODER TESTS AND RESULTS 37

3.1.1 Exhaustive Tests 37
3. 1.2 Monte Carlo Tests 39

3.2 TEST RESULTS ANALYSIS 41

3.2. 1 Correc table Error/Erasure Patterns 41
3.2.2 Uncorrectabl e Error/Erasure 42

Patterns

L

- - -- -- - - - 1__ _ _ .
— _____ :o_

~T~ ~
- -.- --•

~~~~ ~~~~~~~~~~~~~~~~ 
—-—-——---— ----------



4

TABLE OF CONTENTS (cONcLUDED)

Section Page

4 CONCLUSIONS 49

4.1 SYSTEM IMPLICAT I ONS 49

4 . 1.1 Average Decoding Rate 49
4.1.2 Decoder Delay 52

4.2 LESSONS LEARNED 53
4.3 ERROR CO0ING SYSTEM TESTING 55
4.4 (7 ,3) R-S DECODER IMPROVEMENTS 56

REFERENCES

4

‘rns, F- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ - ~~~ ~ w —--~~~-w 

— — — — ---- -

~~~
—-—‘-—---—--- - - -  — - ___________ - —~~~-



LIST OF ILLUSTRATIONS

Figure Pag~
2-1 MC6800 Microprocessor Development Facility 9

2-2 MC6800 CPU Card 10
2-3 (7,3) R-S Decoder Hardware Block Diagram 11
2-4 MOSTEK 3870 One-Chip Microcomputer 12

2-5 (7,3) Reed-Solomon Codeword Structure 14
2-6 (7,3) Reed-Solomon Codeword Representation 16

2-7 (7,3) Reed-Solomon Decoding Program Flowchart 18

2-8 Example 1 - No Errors and No Erasures 26

2-9 Example 2 - Five Erasures 28

2-10 Example 3 - Two Errors 30

2-11 Example 4 - One Error and Two Erasures 32

2-12 Example 5 - Three Errors 34

2-13 Example 6 - Three Errors and Two Erasures 36

3-1 Exhaustive vs. Random Test Results 43

3-2 (7,3) R-S Standard Array 46

4-1 Decoding Rate vs. Symbol Error Rate 50

LIST OF TABLES

Table Page

I (7,3) Correctable Error/Erasure Patterns 20

II Exhaustive Test Results 38

III Monte Carlo Test Results 40

V

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ W: 

_

((
I

1

INTRODUCTION

1.1 PURPOSE

Improvements in Comunications, Comand and Control (C3) System
reliability and throughput can be achieved through the incorporation
of error correction coding . Specifically, the control of transmission
errors induced by channel characteristic variations , equipment per-
formance inconsistencies , and man-made interference whether uninten-
tiona l (e.g., machine noise) or intentiona l (e.g., jamming), is the
primary objective of error codi ng. This paper details the design of
a single forward - error correcting decoder based on a low-cost LSI
circuit - the microprocessor.

1.2 BACKGROUND

Project 7010 (Low Cost Electronics) is investigati ng new LSI
technologies and their suitability for increasing the performance of
C3 syster’~ and lowering life-cycle costs. Error correction roding
can be a very effective system design element in achieving Increased
levels of system reliability and throughput. In the past, error cod-
ing has not been regularly employed in system designs because of the
complexity and cost of its implementation. Wi th the advent of low-
cost LSI circuits and fairly recent advances In coding theory, this
situation is rapidly changing . In order to exploit these deve~~pments,
Project 7010 has been investigati ng low-cost Implementations of simple
error coding techniques Attention has been recently focused on non-
binary cyclic codes, and specifically the Reed-Solomon (R—S) Codes.
Studies already completed have shown that the use of R-S codes on

:. -__ _ _ _ _ ~TII I1

approximated cosmiunication channels leads to improved conmiunicatlon
throughput and therefore enhanced system operation. Details con-
cerning the conceptual work behind utilizing NMOS microprocessors for
decoding short block codes, specifically the (7,3) R-S code, can be
found in Volume I of this report.

1.3 SCOPE

This paper details the design, operation, and testing of a table-
search microprocessor-based (7,3) R-S decoder. The microprocessor
host system hardware and software design is detailed In an Engineering

-

Record. Decoder operations are fully illustrated including spe-
cific examples of decoding beyond the bounds of the (7,3) R-S code.
Error and erasure handling performance is explained as it affects de-
coder throughput and performance. Lastly, decoder test results are
presented for complete and exhaustive error pattern testing and Monte
Carlo simulated error environments. These results are analyzed and
conclusions drawn relative to three main decoder performance criteria:
decoding rate, delay and buffering.

7 - 4 -
- — __

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—
., -—- —---

~
-I--

-
.
~~

-— - —
~~~~~~~

.- — - ---— i w—~~~
-w---

~~
- -

~~~~
--—---- -~~~~ 

-- --- —



SECTION 2

DECODER IMPLEMENTATION

The actual (7,3) Reed-Solomon decoder hardware is but a small
subset of the system hardware used to interactively exercise and test
the decoder. The (7,3) Reed-Solomon decoder software executes as an
application program on an MC6800 microprocessor-based host (support)
system (Figure 2-1). The host system’s electrical design , software,
and operation is detailed in another document. This section details the
basic design of - the (7,3) Reed-Solomon decoder hardware (i.e., the
MC6800 microprocessor card) and its associated decoding software.
Additionally, interactive decoder operation is completely demonstra-
ted through six specific decod ing examples .

2.1 DECODER HARDWARE

The amoun t of hardware necessary to imp lement the (7,3) R-S de-
coder represents a small amount of the total host system hardware.
In fact, the entire decoding algorithm is executed by only six chips
on the host system’s Central Processing Unit (CPU) card. This mini-
mum chip set (indicated in Figure 2-2 by the chips with light gray
labels) implementation consists of a CPU , clock , 1 RAM, an d 3 EPROMS .
Figure 2-3 is a bl ock diagram of the (7,3) R-S decoder hardware. The
code table occupies 1536 bytes (two 1K EPROM5), while the actual de-
coder program requires about 256 bytes of a third EPROM. The tempo-
rary RAM storage requirement is approximately 20 bytes. Due to the
small amounts of program, table and data storage, this specific de-
coder Implementation could utilize one of the recently introduced
one-chip microcomputers such as Mostek’s 3870 shown in the micro-
photograph of Figure 2-4.

8

— .. , ,—---
~~
-

~
-- ----——— 

_
,_~~~

_ --—.-w.--- - - —  

---~~~~ —--— -~



/

_ _ _  

~~~~~~ -:~~~~-w — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I - - 

.
~~~~~~~ 

.

~~~~~~~~~~~~~~~~~~~~~ r~~ P1
________________ _ _ _  

~~~~~~~ I~ r-__ 
-~~

_ _

_ _ _ _ _

-~~vr’~~~~~~~~ ~~~~~~

_ _ _ _ _ _
LU

x

___ -J

_ _ L

_ _

P LU

Q

4 w .

1-

I
9

-—— -

~

~~~~~~~~~~~~~~~~~~~~ -

F— — -  - - .  _______ — — 
~~~~~ ~~~~~~~~~

—- _ ___
~~~~~

.,__ .— -.---. .‘ —~~~~~ -—‘ ...— — - — - . -  — -  -- —



A; ~~ 44i~ ~~~~~~~ v~~~
i
~i1i~~~

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—————————

~~~~~~~~~~~~~~~~~~~~

—
~~~~~~~~~~~

10

ii -

~~ 

— — _ l ’ ’~~~~~~~~~~~~~~~ 4~~~~~~~
_ r__ ._ 

- w -- ‘- -  -- — —-—-- - ——  — -  - — ___________



(A

_ _ _ _ _  U

4:
— 4e

~~~~~‘. ~~o
000 N-10 -

- — b I

i

m

3

(A
w
I- 3W

10

I;’ —

11

— --—-. -——- ~~~~~~~~~~~~~~~~

— 4.~~,— _ — -.~~~~~ - ‘w-~ .—- —
~
--- -

~~~
-— --— - - — - -

~~~~
- — - —

/

~:
~~~~~~~~~~~~ ~~~~~~~~~~ L 

_ _ _ _ _  

-
.

C

_

~~~~~~~~ 
-

~~~~~~~~~~~~~~~~~

-

~

FIGURE 2-4: MOSTEK 3870 ONE-CHIP MICROCOMP UTER

12

- 
- r--~~ -~~ - 

-

- ~~~
—

~~~~~ -‘,
--. - -— - —- - - --.~~.-—-- — .— - — - —

2.2 DECODER SOFTWARE

The decoding algorithm implemented in the (7,3) R-S decoder is
a table search method based on Maximum Likelihood or Minimum Distance
Decoding~~

1. Basically, it consists of comparing a received (cor-
rupted) codeword against a table of all possibl e codewords and choos-
ing that table codeword which Is most like (i.e., minimum distance
away from) the received (corrupted) codeword. Clever codetable re-
presentation , table search, and structured program techniques were
applied to achieve maximum decoder throughput.

2.2.1 (7,3) R-S Code Representation

Figure 2-5 illustrates the block structure of the (7,3) R-S
codeword. Each codeword is comprised of 7 symbols, each of which may
represent any one of eight levels. In the encoding operation the
first three symbols are set to correspond exactly to the desired
message, and the last four symbol s, called parity check symbols, are
calculated and appended for error correction. Codes of this type are
termed Systematic. The coding theory of linear cyclic BCH codes, and
particularly Reed-Solomon codes, states that the codeword symbols of
the (7,3) R-S code are elements of an extended Galois Field
GF(23)~~~2l. By picking an i rreducible primitive polynomial of
degree m 3 , the eight f ini te f ield elements (code symbols) may , as
illustrated in Figure 2-5 , be represented as 3-tuples over the binary
base field GF(2~. This is the manner In which the code ~ mbols are
represented in the decoding program.

It is then necessary to pack the seven code symbols of each
codeword into 8-bit bytes for efficient data manipulation and code-
ta ble storage. Since there are k = 3 i nformatIon symbols per code—
word, and each symbo l can represent any of the q • 8 levels , the

13

- - - - -- - — ---- ——--—-— — — - ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ -.I_ - — -- - . - —-
~
- - — —

F— - --~
-
~
--

~~~~
-—-—---—-— — — — - -- - - . 

-I

-- 

q—-~~~~-w’ - — - . ~~~-



H

L. SYS TE MATIC CODEWORD

O N E  OF
6 5 4 3 2 I 0 q LEVEL S

k 3  N-kz 4

INFORMAT ION PARITY CHECK
SYMBOLS SYMBOLS

N : q _ I ~~ p a _ I : 7 , & q 8

.

~

. ptm = 2~ AND THE CODEWORD SYMBOLS ARE ELEMENTS
OF CF (2~ ) , A GALOIS FIEL D OF 8 ELEMENTS

FIELD ELEMENTS F I ELD ELEMENTS AS 3—TU PLES OVER CF (2)

O 000
0 0I

-
, a ’ O l O

02 10 0
O i l
1 1 0

r 1  a5 I I I
k-II~ I 1 0 1
N
0

Figur e 2— 5 (7, 3) REED SOLOMON CODEWORD STRUCTURE

14

-

. -- N w ~~ 
- - - .,.

~~~~~
- — ---

~~~~ ~~~
. 

~~~~~~
-_. — — —~~~ --—— 1~~~~~~

_ _ _ _ _ _ _ _ _

maximum number of unique messages and hence codewords is qk = 8~ =

512. Figure 2-6 illustra tes the manner in which the finite field
element codewords are represented in the bi nary realm of the micro-
processor. Each of the 512 codewords contains 7 symbols. Since
each symbol can be any one of eight values , codeword storage requires
3 bits per symbol or 21 bits per codeword. These 21 bits can be
packed into three 8-bit bytes with three bits left over as shown In
Figure 2-6. The implementation scheme for codeword representation
is highly microprocessor dependent. The representation scheme illus-
trated in Figure 2-6 has been optimized for maximum efficiency when
utilized wi th the Motorola 6800 microprocessor. It will be noted
that six of the seven codeword symbols are located in the same rela-
tive positions In the three bytes, while the seventh symbol occupies

a unique position. This seventh symbol is (of necessity) split
between two bytes.

The split has been coded to take advantage of the easy test-
ability of bit #7, the sign bit of the microprocessor’s accumulator
register (a status bit comon to all microprocessors). Codeword
symbol #6-bit C20 is positioned in that location. Using the first
three information symbols of the systematic code to form a table
entry vector, the table search is initiated at that point. This
assumes that these symbols were received correctly, a val id assumption
in the majority of cases involving “decent” error rates (e.g., better
than .lO~~). Max imiz i ng correc t table entry increases through put
because it minimizes table search time, in most cases resul ting in
only one table look-up operation.

Since the (7 3) R-S code is a valid cyclic code, the codetable
storage could have been reduced by 85.55% by taking advantage of the
cycl ic properties of the code. Al ternative programs were written
using thts method, but were found to adversely affect the decoding

15

~~~~~~~~~~~~~~~~~~~~~~~ 
--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -. -
~~~

--/ w—~~~~~~~~~~~—~~~~~~~~~ -_ ~~~~— - - — - — - -~~~~~~~~~~~~~~~~ - -~~~~~~~~~~~ - - -



/

W ORD CODE TABLE

0 O O O O O 0 O ~~~~~~~
I ~ 0 ~ ~~~.

‘ ? ‘-.~~ 
-~~~~~~ CODEWO~~ IN BINARY

2 O O .’ .4 a’ .t a4 
~~~~~~~~~~ ~~~~~~~~~~~~~~~ STORAGE BYTE

EXAMPLE : CODEWORD #411 . .~0 a 0
0

‘-a
s

~~D r 2~1IiL~
~~~ 4

- U U ~ C1UI~ ~a3

7
a

NOT E
512 CODEWOROB REQUIRE 3 BYTES EACH
FOR A TOTAL TABLE STORAGE REQUIREMENT

— — - - — - — OF 536 BYTES .
4 11 

~~~~~~~~ o~ ’ 0 ~

511

0
0
0

N
II)

H

Figure 2-6: (7,3) REED SOLOMON COOEWORO REPRESENTATION

16

-

~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~

‘

~~~~~~ ~~~~ ~



rate due to the overhead required for cyclic shifts. Nevertheless,
this alternative does represent an Interesting tradeoff of decoding
speed vs. storage requirements particularly when considering imple-
mentations of longer codes. Another al terna tive is the storage of
onl y 4 code symbol s ins tead of 7, si nce every (7 ,3) R-S codeword Is
uniquely defined by any three symbols. This would reduce codetable
storage, but would require received codeword permutations to govern
the compares and ensure error/erasure correction. However, the
max imum number of compares woul d be drama tical ly reduced, making
this an attractive tradeoff.

2.2.2 The Decoding Algorithm

A basic flowchart of the (7,3) R-S decoding algorithm is shown
in Figure 2-7. Decoding operation is explained using this flowchart.
A received (possibly corrupted) codeword is stored in scratchpad
memory in the three byte format shown in Figure 2-6. It is assumed
that the demodulator has converted the received m-ary symbols into
their corresponding binary equivalents and transmits the received
codeword ( i .e. , a bl ock of three 8-bit bytes) to the microprocessor
along wi th a fourth byte indicating which , if any, symbols have been

*declared erasures. Erasure declaration is assumed to include a
“best guess” at the received symbol. It is further assumed that,
since decoding time is a function of the corrupting error pattern,
It Is not constant, and therefore, a system buffer must be employed
to store received codewords whi le  other codewords are being decoded
(see 4.1 .2).

*An E RASURE is a symbol that is known to be in error. This simpli-
fies the decoding task because the symbol location of the error is
known , an d It then remains to determ ine the value of the error .

17

%~~~ -~ - .-a.~~ ‘---. , .- - -  -

.~~~ F — —_
‘
~~~~,~~~~ —-.---—-~~~~~~~ —.——— -. --  _______________________ 

- —

(7,3) R E E D — S OLOMON DECODER

INPUT RECEIVED CODEWORD (N)

COUNT NUMBER OF ERASURES C E) IN N

E~2t YES CAN T DECODE COOEWO.O NWHERE t~2 AS RECEI 0?
NO

CALCULAT E EXIT CONSTANT (D,,)

D.Z :[t~~~SJ INT

CALCULATE TABLE ENTRY POINT

FETCH CODEW ORD (C) FROM TABLE

CALCULATE NUMBER OF SYMBOL DISCREPANCIES
(0) BETWEEN C & R

YES OUTPUT C AS DECODED
? C EW RD

NO

YES NO
Dmj n Dmi~’ 0

NO YES CLEA AMBIGUITY
REGI ER

IN CREMENT AMBIGUITY
REGISTER

SAVE C ADDRESS

NO C IP4 ThBLE

~~~~~~~~~~~~~~~UTuI NIMU~~~ i~~~~~E~~~~~~~~AND ALL C~SAT ThATDISTAI4 C1

Fiqur. 2-7 : (7,3) REED SOLOMON DECODING PROGRAM FLOWCHART

18

~~~~~~~~
-
~~~-w-~ — _ _ _ _ _ _ _ _ _ _ _ _ _ _—. - - . ~~~- ~~~~~

—, — — —------ ~~~--— .—---—-- -



The microprocessor first  evaluates the number of symbols that
the demodulator has declared as erasures . Maximum likel i hood decod-
ing provides for the correction of a maximu m of twice as many erased
symbols, in the absence of any errors, as the error correction capa-
bility (t) of the linear block code. Should the number of erasures
(E) exceed 2t, then the received codeword cannot be decoded and
further decoding operations on this received codeword are a waste of
decoder time. The microprocessor , recognizing this event, does not
attempt any further decoding operations and simply outputs the code-
word as received and proceeds to decode the next received codeword.

Next, a so-called “Exit-Constant” (D ex ) is calculated . From a
simple proof of Maximum Likelihood Decoding it can be shown that for
correct decoding 1

~~
2t + s � d - 1 ( 1 )

t = the number of symbol errors in a received codeword
s = the number of erasures in a received codeword
d = the minimum Hanin lng distance* of the linear block code

For the (7,3) R-S code d = 5. Shown in Table I are the possible
combinations of the n umber of symbol s in error and/or erased in any
single received codeword that can be corrected.

*~inimum Hanining distance Is the least n umber of symbols by which
any two codewords di ffer.

- 

19

_ _ _ _  
I

- ~~~~~~~~~~~~~~~~~~~~ - 
-

p.— .
~~~ -~ 

-

-
— -

,~~~~~~~~ — —~~~~-~~~- - —
~~~~~v- 

— - -
~ 
.- 

~~ 
-
~~~~~~~~~

- — --- —
~~
— -—----- - . . - — - --—-—_________

Tabl e I

(7,3) R-S Correctable Error/Erasure Patterns

No. of Errors No. of Erasures
0 1
0 2
0 3
0 4
1 0
1 1
1 2
2 0

Given the number of erasures in a received codeword and the minimum
Hanining distance of the code, equation (1) can be manipulated into :

t c (d - 1 - s)/2 (2)

For correct maximum likelihood decoding, t Is the maximum number of
symbol errors al l owed in a received codeword given s known erased
symbols. The truncated integer value of t will be defined as
0ex the exit constant. The ut i l i ty of this exit constant wil l become
evident later in the description of the decoding algorithm.

The codeword table provides valid codewords for comparison with
a received codeword. The tabl e search procedure has been structured
to minimize the number of codewords that must be accessed and corn-
pared . This table search optimization is accomplished by beginning
the search assuming the received codeword Is a valid codeword and
entering the table at exactly that entry. A table entry pointer Is
calculated from the three message symbols of the received codeword
(bits c12 - C20 In Figure 2-6). Note that wi th the codeword
representation scheme of Figure 2-6 , a one bit rotate-left operation

20

- -~~ ~~~~~-.-~~~~~---~~--—---— - —- - - ___________________
~~

....
~~~ -— ~~~~~~~~~~~~~~



on byte 2 of the received codeword sets up the testing of three bits
of symbol 6, i.e. , C18 - C20, since C18 and C20 are in the sign
position of the bytes and C19 is in the carry. This efficient method
results In the quick calculation of a table entry point. It may be
noted that no rotate operation would be required at all if bit C18
were located in the most significant (sign) bit of byte 0. While
this Is true , that arran gement could resul t In abnormall y diff icul t
compare operations involving symbol 6 later on In the program. I-f
the received codeword is correct, or if all errors and erasu res are
confined to the parity check symbols, the table entry procedure wi l l
result in only one fetch operation, i.e., the processor points to the
described correct codeword irnedlately.

Using this table entry point, the microprocessor fetches one
val id codeword from the table (three bytes). The selected codeword
is compared symbol-by—symbol (not counting erased symbols) with the
received codeword and the ntmlber of symbol discrepancies D (number
of symbols that are different) is found. The nunber of symbol dis-

crepancies 0 is compared with the previously calculated exist con-
stant If at any stage during the decoding operation, it is dis-

covered that a valid codeword, i.e., an entry from the codeword

tabl e, differs f rom tt~ received codeword by a number of symbol s
(not counting erased symbols) which is less than or equal to the
exist constant, Maximum Likel ihood Decoding guarantees that there
are no other valid codewords which are any more likely. If D < Dex~
then the most likely codeword has been located and it Is declared
the decoded codeword. Should D not be less than or equal to Dex~
o is compared with Dmjn~ 

the least value of D found to that point

In the decoding procedure for that particular received codeword. If

the latest U is less than or equal to 0min ’ it Is specifically tested

for equality. If D is found to exactly equal 0mln ’ it means that

21

-----——
.~~~

.II--- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .———--- --——______ - 

-

another valid codeword of distance D = 0mifl away from the received
codeword has been found. This situation cannot exist for any cor-
rectable error and erasure patterns or for patterns which corrupt
a transm itted codeword so bad ly tha t it is mapped closer to another
val id codeword than the one which was or iginal ly transmitted (the
weight of the corrupting error pattern exceeds one-half the minimum
Hamming distance of the code). There are , however , error patterns
whose weight exceeds the number of allowable symbol errors and also
are an equal distance from several val id codewords . The algorithm
detects such patterns and therefore represents an “attempt” at decoding
beyond the bounds of the code . This is only an “ attempt” , because
the ambiguity register indicates how many ambiguous codewords there
are in these instances , and a l is t of the codewords is avai lable
as output (see example No. 5, Figure 2-12).

At this point if D ~ Dmin~ It must be that D < Dmin so that
a new is declared equal to the D just found, and all previous
ambiguity information is erased. The address of the codeword found
is saved for later output if no more likely codeword(s) are sub-
sequently found.

-

The next decision block in the flowchart asks if the entire 512
entries in the codeword table have been searched. (This poin~ is
reached immediately if D had been found to be not less than a pre-
v iousl y declare d Dmin~) If the answer is no, the table pointer is
Incremented and the next val id codeword is fetched from the table.
If the answer is yes , the decoder outputs the best minimum distance
(number of discrepancies) found and all the valid codewords at that
distance. Note that this program exit point only occurs for codes
with t > 2 (I.e., beyond the correctable bounds of the (7,3) R-S
code), and results in an ambiguity in the possible transmitted code-
word. Had the error pattern with weight greater than 2 corrupted the

22

— —-----———- . 4r— -~--i,----——-~~~~~~ -

transmitted codeword so badly that it was “mapped” closer to another
val id codeword, the algorithm exit point would have been from the

0 < decision block, and the decoder would never have recognized
that it decoded to the wrong codeword. Indeed, the decoder sees th is
as simply an example of decoding an allowable error pattern.

The main time consuming loop in this algorithm is between the
“Last C in table?” decision block and the “Fetch codeword (C) from
table” block. This is the most vigorously optimized loop and is that
part of the algorithm which is timed for purposes of estimating the
decoding rate.

2.3 DECODER OPERATION

The (7,3) R-S decoder was specifically designed for interactive
operation and testing. As such, an operator is able to choose any
single codeword and error/erasure pattern and observe the resul ts of
the decoding operation. Alternatively, an operator can exhaustively
generate all possible codeword - error/erasure pattern combinations
or initiate random selection of these parameters. To illustrate de-
coder operation and performance, six examples will be explained .
These examples have been carefully selected to show the results of
decoding different error/erasure patterns on randomly selected code-
words. The performance assessment parameters of the decoding opera-
tion are available via the decoder information fields displayed on a
video monitor.

23

2.3.1 Example 1 - No Errors and Erasures

Figur ~’ 2-8 illustrates the monitor display for the case of a
transmi tted codeword that was not corrupted by any errors or erasures ,
i. e., a correctly received codeword . The program fi rst prompts the
operator for an “Input Message ” . The operator i nputs three message
symbols in their bi nary representation , in this case 100 100 101 .
The program uses this message to calculate a codeword table entry
point. The entire codeword is read out of the table and displayed
on the screen as the “Encoded Codeword” : 100 100 101 111 101 110
111 . Thus, codeword encoding is simply a table lookup procedure
whereby a systematic codeword is produced. The system then prompts
the operator to “Input Error and Erasure Pattern ” . The operator may
indicate an error by typing in a “1” , no error as a “0” , or an erased
symbol by an “e” . Once one of the equivalent symbol bits has been
declared in error, the entire symbol is in error. The system next
corrupts the encoded codeword wi th the specified error pattern (an
XOR operation) and ~isp1ay s the result as the “Rece ived Codeword” .
This simulates the reception of a corrupted transmitted codeword by
the decoder. The system (playi ng the part of a demodulator) forms a
byte containing information pertaining to the symbols which have been
specified (declared) erasures and hands this byte, along with the
three byte received codeword (see Figure 2-6), to the decoder. It is
at this point that the actual decoding algorithm begins and the timer
is started. The decoder has no priori knowledge of the selected
message sequence or of the chosen error/erasure pattern. It merely
takes the rece ived codeword , calculates a table entry point from the
message symbols, and starts the table search and compare operations
at that point. In this case, s ince there are no errors or erasures,
the table entry point is the correct codeword. Comparison with the
received codeword shows no discrepancies , i.e., zero symbols are

24

F- - - - -
~~ -

m~~~~~
-

~~ ~~~~~~~~~ - ~— ---~~~- ~~~— - ~~~~~~~~~ --------—-- -- .. — — — -~~~ ---~~~ ~~— ~-. - - -- ~~~~~~~~~~~~~~~~~~~

unal ike , and therefore the codetable word pointed to is declared the
“Decoded Codeword” . The remaining performance assessment information
displayed indicates that , as a result of the decoding operation , the

- decoder found no symbol errors or erasures and found one codeword
that was distance zero (i . e . , an exact match) away from the rece ived
codeword. This codetable word was declare d the “Decoded Codeword” ,
output , and the timer stopped. The displ ay shows a decoding “kernel ”
(table search and compare operation) time of 000.209 milliseconds or
209 microseconds.

- This time represents the minimum execution time
required for one table fetch and compare operation . As such, it is
the minimum time that the decoder takes to declare a decoded codeword
when the codeword is received without errors or the corrupting error!
erasure pattern affects only the pari ty check symbols. This time
represents a limiting factor on the decoding rate (see 4.1.1).

25

F- - - - - —— a.... ~~~
- — - - _____

- - -

FIGURE 2-8: EXAMPLE 1-NO ERRORS AND NO ERASURES .

26

- F- - - - - —-
~~~~~~~~~~~~~ 

- 
— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-. — - - ----

~
— -— - - - -

~~~
--  - - .

~~~~.


2.3.2 Example 2 - Five Erasures

Figure 2-9 shows the results of decoding a received codeword
that contains five erased symbols. Since the number of symbol era-
sures exceeds twice the maximum symbol error correcting capabil i ty
of the code (equation (1)), this received codeword cannot be decoded
and is output just as received (assuming soft decisions from the de-
modulator). The decoder performance assessment information shows an
aster’isk next to the “ Decoder Codeword” indicat ing that the maximum
number of al lowable erasures has been exceed ed . The decoding time
was simply 4 microseconds , the time taken to recognize the excessive
erasure condition and branch back to another received codeword . The
number of codewords found is zero as would be expected . The number
of symbol errors found and minimum distance (D) found are both equal
to 8, a program in i t i a l i za t ion constant which is meaningless in this
case. The number of symbol erasures found is f ive and accounts . for
the aborted decod i ng attempt.

*

-

27

- — --—-—-] ~~- . r. *SSW .. - - - -

F- ~
- -

~~~~~~~~~ --. —- — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — — — — —  - —- —



FIGURE 2-9: EXAMPLE 2-5 ERASLJRES

28

F- 
- 

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ - 
. . ~~~~~ ____________



2.3.3 Exampl e 3 - Two Errors

Figure 2-10 shows the decoder performance assessmen t information
for a received codeword which has been corrupted by an error pattern
containing two symbol errors. Designating the right most symbol in
the pattern as the 0th symbol, it can be seen that the operator has
declared symbols 3 and 4 in error. Consequently, the received code-
word di ffers from the encoded (transmitted) codeword only in symbols
3 and 4. Since two symbol errors, in the absence of any erased sym-
bols , Is an allowable (i.e., correctable) pattern from equation (1),
a correct decoding operation should result. Indeed, as Figure 2-10
shows , the decoder did discover two symbol errors, found one word in
the codetable that was distance two away and declared that table
entry as the decoded codeword. It will be seen that a correct decod-
ing occurred , since the declared “Decoded Codeword” is the same code-
word as the originally transmitted “Encoded Codeword”. The decoding
time of 527 microseconds warrants further comment. Since it is known
that a period of approximately 209 mi croseconds is required for each
codeword table fetch an d compare opera tion , it would seem that this
particular received codeword requi red two table fetches. That this
was in deed the case can be shown by recalling how the table entry
point is calculated . From the received codeword, note that message
symbols 6, 5, and 4 equal octal 152. Note that symbol 4 is in error
and therefore the table entry point is not at the I deal loca tion as
in example 1 . However , it is fortuitous that the error pattern changed
symbol 4 from a value of 3 to ~ , allowi ng the table entry point routine
to direct the decoder to start searching the table at a position one
codeword before the correct entry. Obviously, with other error pat-
terns the entry point would be £Jifferent resulting in greater
decode times.

29

~~ F ~~~~ - - - --- ~~~~~~~~~~~~~~~~~~~~~~~~ 
____



U-

FIGURE 2-10: EXAMPLE 3-2 ERRORS -

30

F- - w—__ ’________
~~

_ __ -
~
-.--- - - -



2.3.4 Example 4 - One Error and Two Erasures

Figure 2-11 shows the decoder perfo rmance assessment info rmation
for a received codeword which has been corru pted by an error and
erasure pattern containing one symbol error and two symbol erasures.
From equation (1) this is a correctable combination of errors and

- 
erasures , and a correct decoding operation should ensue. Referring
to Figure 2-11 , the decoder did discover one error and two erasures.
The decoding time in this example was 8.505 milliseconds , indicating
that abou t 40 out of the 512 codetable words were checked before
finding the correct entry. Again , this time is dependent on how the
error pattern affects the message symbols and therefore the cal-
culated table entry point. The figure further indicates that the de-
coder found one codeword at a minimum distance of one symbol. This
minimum distance value does not include the erased symbols declared
in the received codeword, as these symbols are not counted in the
symbol-by-symbol comparison checks. It is obvious that the declared
“Decoded Codeword ” is the same as the “Encoded Codeword ” and there-
fore a correct decoding has occurred. It will be further noticed that
the distance between the “Decoded Codeword” and the “Received Code-
wo rd ” indeed is equal to one symbol , not counting the erased symbols.

It should be noted that erased message symbol s are still uti l-
ized as received in the table entry point routine but not In the
symbol compare operations. In this particular decoder implementation
the value of the “erased” symbol is actually the correct value and
thus the decoding times are favorably biased .

31 
- 

- 

.--~~~-‘.-..—- _1-_ — - f ,

~~



A

FIGURE 2-11: EXAMPLE 4-1 ERROR AND 2 ERASURES

32

F- - - — ~~~~~~~~~~~~ ~~ -~~~~--. - - . -—--.. -  - - ____________



2.3.5 Example 5 - Three Errors

Figure 2-12 shows the decoder performanc e assessment information
for a received codeword which has been corrupted by an error pattern
of three symbol errors. The val ue t = 3 (s = 0) does not satisfy
equation (1) for the (7,3) R-S code, ahd therefore the error pattern
exceeds the error correction capability of the code. The decoder
will , however, attempt to decode the codeword since the number of
declared erasures (s = 0) is within bounds. Figure 2-12 shows that
the decoder did indeed recognize that three symbol s were in error.
However , when attempting to find a minimum distance codeword, the
decoder searched the entire table (requiring 134.27 milliseconds)
and found that there were seven words three symbols distant from
the corrupted received codeword. All seven of these codewords
were ambiguously declared as choices. Note that all seven of these
codewords differ from the received codeword by only three symbols,
and the original ly encoded (transmitted) codeword Is among them.
Such a “l ist” of possible codewords can be viewed as a “partial de-
coding” , i.e., reducing the uncertainty in codeword selection from
one in 512 to one in seven. Given other a priori knowledge of the
messa ge source , such as its type, e.g., a slowly varying anal og
signal or redun dant vi deo data , migh t yiel d further clues as to the
identity of the transmitted codeword.

33

~~~~ ~~~~~~~~~~~ 
- — — -

~~~~~~~ —— - —  w— — — -- - — -~~~~~~~~~~~~~~~~~~ —~~~



FIGURE 2—12: EXAMPLE 5-3 ERRORS ~~~~~~

34

-w ~~~~~~~~ ‘- --‘ .— - - -— - -- -



2.3.6 Example 6 - Three Errors and Two Erasures

Figure 2-13 shows the decoder performance assessment information
for a received codeword which has been severely corrupted by a
pattern of three errors and two erasures. Such a pattern clearly
exceeds the correction-capability of the (7,3) R-S code, but the
decoder attempts a decoding operation unaware of this fact. Indeed,
as shown in Figure 2-13, the decoder reported that it successfull y
decoded this codeword and found one error and two erasures, taking

33.178 milliseconds to search approximately one quarter of the
table before finding one codeword that was distance one away. Com-
paring the declared “Decoded Codeword” with the transmitted “Encoded

Codewor d” , it can be readily seen that they do not agree and there-
fore a decoding error has occurred. What has happened , of course ,
is that the error/erasure pattern was so severe that it “mapped”
( changed) the transmi tted (enco ded ) codeword into a corrup ted
codeword that was closer to a different codeword than the original.
In fact, comparing the declared “Decoded Codeword” with the “Received
Codeword”,it can be seen that (not counting erased symbols) only
one symbol Is not the same, i.e., the minimum distance between these
two since the occurrence of this single error pattern is a much more

“l ikely ” event than the tripl e error pattern that actually occurred.

35

- _4_~ - - - - -~~ - -. - - -~~~~-

_ __  - - _ _ _ _ _ _

- w-- -~W~W--——-- .,--—- .’ -



FI GURE 2-13: EXAMPLE 6-3 ERRORS AND 2 ERA SURES

36

- F- - — - - -  —

- 

~~~~~~~~~~~~~ —— -.—
~~~~~~~~~

- ______________



SECT I ON 3

DECODER TESTING

The opera tiona l pa rameters of the (7 ,3) R-S decoder were deter-
mined by a series of tests designed to exhaustively and randomly

exercise the unit. The test objectives were to calculate the

correctness of decodi ng, the average decoding rate, and the decoding
delay.

3.1 Decoder Tests and Results

The interactive word-at-a-time operation described in Section

2.3 successfully decoded all submitted (correctable) error patterns.

To gain further confidence in the correctness of decodi ng, exhaus tive
error pattern tests were run, whereby not only correct decoding was

verified , but also average decoding times were calculated . To test

the decoder un der random error cond iti ons , several Monte Car lo runs
were completed, an d avera ge decodi ng times and correctness were aga in
verified .

3.1.1 Exhaustive Tests

Each of the (7 ,3) R-S decoder’s 512 valid codewords was subjected

to every possible correctable error/erasure pattern shown in Table I.

This “exhaus tive” test ensured that the decoder could properly decode
all possible combinations of the eight correctable error/erasure

pattern types and also provided an opportunity to calculate the aver-

age decoding time for different error/erasure patterns. Table II shows

the results of the exhaustive tests, with columns i l lus tratIn g : ( 1)
the correctable error/erasure pattern parameters, I.e., the number of

erasures and/or errors per pattern, (2) the total number of patterns

37

- - .- ~
- , .

~~ - - - - - ...-~~‘ - -~~~~~~~- - , -
~

- - - - - 

~•• •~~~~ - •~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • 

.

~~~~- ~~~~~~~~~~~~

- -— -- -

~~

-- - -

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
~-



F

L
TABLE ~ 

— EXHAUSTIVE TEST RESULTS

NUMBER OF NUMBER OF NUMBER OF PATTERNS AVERAGE
SYMBOL ERRORS SYMBOL ERASURES RUN (512 x ALL POS- PATTERN

SIBLE COMBINATIONS) DECODING TIME

o I (~~) 5I 2 :
3,584 2IO~as

O 2 ( ) 5 1 2 =
10 ,752 2IO~ts

o 3 (‘~)5 I2 :
17,920 2IO~&s

O 4 (~~)5I 2z
17,920 2IO,~s

(
~

). 2~ 7~ 5I2~I I 
150 ,528 

29.O6ms

I 2

376,320 
29.O6ms

I 0

25 ,088 
29.0Gm.

2 0 (:) 7 7’512 : 
48.23ms

Li1•1I.. I
I~ IIJI II~ j

38 

- —

F- - - -  - - - - • - -  -~~~~~~~~~~~ - ______________

I WT ~~~~~~~~~~~~~ - _ — -



possible for each correctable case, and (3) the average decoding time
for all  members of that pattern ’s family. In addition , a partial run
(time limited to three hours) was conducted for triple error patterns
(an uncorrectable error pattern). The average list decoding time for
this run was found to be 120.5 milliseconds or 89.7% of the search
time for the complete table.

During, the running of the exhaustive tests each declared “Decod-
ed Codeword” was compared against the “Encoded (transmitted) Codeword”
to verify correct decoding. In this manner one bit programed in
error in the codeword table ROMs was discovered and corrected. This
error was easily spotted due to the consistent failure of the same
codeword.

3.1.2 Monte Carlo Tests

In order to test the~ (7,3) R-S decoder under random error condi-
tions, Monte Carlo runs were employed. The Monte Carlo runs were
di rected by a random number generator program written for the host
system ’s CPU (MC6800). This random number generator program utilizes
“Al gori thm-M” and empl oys two random sub-generators : a linear con-
gruentia l generato r and a maximum length l inear  feedback shif t  regis-

- terJ31 The random number generator was used to select random code-
words and random error/erasure patterns confined to the eight cor-
rectable types of Table I or II for each error/erasure pattern
specified , three runs each of 32, 64, 128 and 256 random codewords
and patterns were completed . As in the exhaustive tests, correct
decoding and average decoding time were calculated for each run.
Table III shows the results of the Monte Carlo runs with columns illus-
trating: (1) the error/erasure ~attern specified , (2) the number of
random runs allowed , and (3) the average decoding time per codeword
over three runs.

39

fr - --.- - ________

- 
~~~~~~~~~~~~~ 

——---..,- ---~

TABLE W — MONTE CARLO TEST RESULTS

NUMB ER OF NUMBER OF NUMBER OF AVERAGE PATTERN
SYMBOL ERRORS SYMBOL ERASURES RUNS DECODING TIME

O I 32 210 $.
0 I 64 209 $.
0 I 128 210 $.
o I 256 2~0 $s
o 2 32 210 $s
o 2 64 209 $s
0 2 128 209 $.
0 2 256 2 I O ~~s
o 3 32 209 $s
o 3 64 2 10 $$
o 3 128 209 $s
o 3 256 210

o 4 32 209~~s

o 4 64 210$.
o 4 128 2O9 $s
o 4 256 2IO~~.
I I 32 3O.6m .

1 64 24 .6m s
I I 1 28 27 .Sms
I I 256 26.9ms
I 2 32 27.9ms
I 2 64 26.B ms
I 2 1 28 27.6ms
I 2 256 27.4ms

0 32 26.Gms
I 0 64 26.3ms
I 0 128 28.Im.
I 0 256 29.1*.
2 0 32 35.2*.
2 0 64 47.5*.

2 0 - 28 46.7*.
2 0 256 5 I . t m s

40

—

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
-
~~~~~~


3.2 TEST RESULTS ANALYSIS

The results are analyzed for both exhaustive and random tests to
determ ine the correctness of the decodi ng opera tions and the avera ge
execution time for all correctable error/erasure patterns. For
patterns beyond the design distance of the (7,3) R-S code, the decoder
performance is analyzed wi th the aid of the classic standard array
struc ture~

2
~.

3.2.1 Correctabl e Error/Erasure Patterns

After correcting a misprogranined bit in the codeword table
ROMs , the correc tness tests ran withou t error for the exhaus tive and
Monte Carlo runs . Therefore, it was proven that the decoder will cor-
rectly decode all error/erasure patterns satisfying equation (1).

The average decoding times for each of the eight correctable
error patterns warrant further analysis. Both tests (exhaustive and
Monte Carlo) showed that the decod ing time for any declared erasure
pattern (in the absence of any errors) was approximately 209-210
microseconds. This is easily explained since the decoding algori thm
Ignores erased symbol s an d enters the tabl e at the correct point the
fi rst time . Therefo re , the average time shown is simply the time
required for one table fetch and compare operation analogous to Example
1, Figure 2-8 , for a correctly received word . It was mentioned for
decoding Example 4 (2.3.4), however , that one critical programi ng
liberty has been taken . This occurs when one or more of the codeword ’s
Informat ion symbols has been declared erased . In 2.2.2 it was assumed
that the soft decision erased symbol declarations were accompanied by
“best guess ” symbols. In calculat in g the table entry point using
erased information symbols, however , the correct (encoded) symbol Is
always used. In other words, a routine was not included to “corrupt”

41

w ~~~~~~~~~~~~~~~~~~~ —- —~~~~~~ .— - -- - • -

erased symbols like symbols which are in error. This should be con-
sidered for future incorporation and it most certainly affects average
decoding times for patterns with erased information symbols.

The average decoding time for all patterns of one symbol error
and 0, 1, or 2 erasures from the exhaustive tests was found to be
29.06 mIlliseconds. This number is subject to the remarks previously
made relative to calculating table start addresses using erased symbol
i nforma tion. The random test runs for these same patterns prov ided
average decode times that correlated very closely with the exhaustive
averages. Figure 3-1 compares the results of the exhaustive vs. ran-
dom tests of the average decoding time of the remaining four correct-
able error patterns. The total aggregate of random data points aver-
ages out to be only 5.6% below the decoding time of the exhaustive
tests for the first three patterns, a figure highly dependent on the
sample size of the random runs and the bias of the random number gen-
erator. For the two error and no erasure patterns, the small ran dom
sample run (i.e., n = 32) is seen to be bel ow the exhaustive average
by 27%. However, the random decoding times for this pattern correlate
quite well wi th the exhaustive test results for larger sample runs,
and , in fact, the aggregate of the four points averages only 6.4% be-
low the average decoding time of the exhaustive tests.

3.2.2 Uncorrec tab le Error /Erasure Pa tterns

Rather extensive investigation was carried out relative to decod-
er performance for error/erasure patterns which do not satisfy equation
(1) and l ie therefore beyond the design distance of the (7,3) R-S code.
Since the decoder decodes every possible received word into one (or
more) poss ibly transm itted codewords , it exhibits a complete decoding
algorithm and is not a bounded-distance-decoder in the strict sense~

4
~.

Specifically investigated were error-only patterns of weight three and

42

— — -.-., F- - - - - ‘~~‘~~‘~~~~~~~~~~~~~ .ç— -.-— w - - •

ID ~
UI

-
~~~~~

•0 
~~E N ~~~~

WI 
- N

I’N

U)

— I
N g m~~ Id

F-
0 ID 4 )

N
ID 0
o o~~:~~ 0

• ~~~~~~~~~~~~~~~~~~~~
I’ IDIA~~~
U,

~ • U,
‘- >

Id
ID ~~~ J U)  >

8 ’
U, z I~~

I, ,~~~~_ U,

4 Id
~U, • ID W~~~~~~ -.

> ID 100
N-

~~~~~ z~~~:w 
U, — —— U,

.0

z , 1 0
UI ID 4) 4

~ •
11 o~~~III 4 O~~• ID UI ~

01

I ~ I I I I I I _
~

_
~ • 4 I ~ -I—

N ID 4 0 ‘0 N ID 4 0 ID DI
~ * 4 In In N N 01 — —

(~~ONO33SI~~1IV)

~~~~Ii 0N100330
.0

4
~.4

43

_______

-~ ~~~ F- 
- ___________________________— - --— - I  

~~~ -~~ —--~~~~~~~ —-  - -


four. In order to better understand the decoder performance when
operating on val id codewords corrupted with error patterns of such
weight , it is expedient to look at a standard array representation
of the (7 ,3) R-S code. There is no need to completely f i l l in the

= 221 array values , but an enumeration of the number of differ-
ently weighted words is helpful in understanding decoder operation.
Using the MacWil l iams ’ formula to f ind the weight distri bution of a
maximum-distance-separable code~

2
~

j -l — (n—k)
= (

~
) (_ 1) h (J) (qJ_ h_ (f l_ k) _ 1) (3)

h=0

the (7 ,3) Reed-Solomon code exhibits parameters of n=7 , q=8 , k=3 , and
n-k=4. Equation (3) allows the calculation of the number (As) of
codewords of weight j as:

A0 = 1

A 1 = A 2 = A3 = A4
= 0

A5 = A6 = 147

A7 = 217

7
where,E A. = qk = 512 codewords . Forming the (7 ,3) R-S Standard

j=0 ‘~

Array , the f irst row contains the 512 valid codewords. The coset
leaders of the next 1078 rows are the correctable error patterns ,
first ,(~) = 49 single error patterns,then (~)72 = 1029 double error
patterns. The interior of the array is the result of adding

appropriate row and column leaders. Knowing the weight distribution
of the valid codewords, and from R-S code theory that d = n-k + 1
and t = 2, it is seen that all single and double error patterns are

44

~~~ 
F - 

-



correctable. Thus the weight distribution of the interior of the
array can be readily calculated since all single and double error
patterns are present. For example, the number of words of weight
six which are formed by combinations of valid codewords and the
double error patterns (weight—two words) can be calculated by con-
sidering the various ways in which these combinations are possible.
First, weight-6 words can be formed from weight-7 codewords added to
a weight-2 error pattern where the mod-2 sum of one error symbol and
one codeword symbol equals zero, and the sum of the other error sym-
bol and a codeword symbol results in a different non-zero symbol.
Likewise, a weight-6 word will result from a six-weight codeword
where two non-zero symbols are changed by the two error pattern sym-
bols into two other non-zero symbols. Furthermore, a six-weight
codeword can be combined wi th a two-weight error such that one non-
zero error symbol value adds to a zero symbol of the codeword while
the other non-zero error symbol value exactly equals the correspond-
ing symbol of the codeword and yields a zero symbol . Lastly, a
five-weight codeword can combine wi th a two-weight error pattern
whereby one non-zero codeword symbol is added to one non-zero error
symbol resulting in a different symbol , and one zero symbol of the
codeword is added to the other non-zero symbol of the error pattern
resulting in a new non-zero symbol . Mathematically, these combina-
tions can be calculated as:

= (
~ )(~

) 6. 217 + (~)62 147 + 7•6 . 147 + 7 (~ )~6 2  147 =

201,978 (4)

Figure 3-2 illustrates the structure of the standard array for
the (7,3) R-S code with the calculated array weight enumerators in-
cluded for the correctable error patterns only. Considering for a

45

0. 
~~~,# ~

—-•-
~~

- ——-—- -——- - -- _________
_ _ _ _ _ _ _ _ _ _— -sw-

~~

-. —

~~~ 
— — 

~~~
—_- -. —--_--- - —‘.-.~

0
Id

-J0I
— N

0 -J
N

—

‘I U

0 ,, q
N o ;
— 0 I’ 10 0
~0 I’ F-
‘I

- F-
I~ Il II It II II ~ ~
* 10 tO P- . 0 * 1 0 1 0 ~

.. 10 (‘4

IL.

N
0

U

U) U) (I)
Z z

0
“

~~~~F- -~~~~0_
~~~~~~4 - 

~~~~~~~~~~~~~~ 
N inO W  ~

10
ID
- ~~_ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _

01

960* = b
4
‘-I

46

.~~
- 

~~~~ F- 
-

- ,- - - - ~~~~~~~~~~ --- - — - --—~~~ — —., ______________

moment array members of weight three, the figure shows that 1470 of
these result from combinations of two-weight error patterns and valid
codewords of

W3 = E 2 + C~
- (5)

where: W3 = interior array words of weight three

E2 = double error pattern

c .~
= any ~

th codeword

If one of these three-weight words is an error pattern that corrupts
a transmitted va l id codeword C~ , then:

C~~+ W 3 C~~+ E 2 + C 1 = E 2 + C k (6)

where C~ + C,~ = Ck by the group property of the linear block code.

Equation (6) indicates that 1470 weight-3 error patterns will
“map” any transmitted codeword closer (distance 2) to another valid
codeword. What of the remaining three-weight error patterns? There
is a total of (~)73 = 12,005 weight-3 error patterns. Since ft has
just been shown that 1470 of these result in incorrect decodings , the
remaining 10,535 triple error patterns must result in corrupted code-
words that are at least distance three away from one or more codewords.
Figure 3-2 shows that a maximum of 3017 of these patterns can be
arbitrar i ly declared coset leaders , an d therefore a “standard array
decoder ’t could ambiguously decode 3017 out of the 12,005 or 25% of all
triple error patterns. The (7,3) R-S decoder algorithm under consid-
eration here , will “decode” 10,535 corrupted codewords, 87.8% of the
total triple error patterns, to a list of possibly transmitted code-
words. Extensive decoding runs have confirmed that this list size
is always < 7.

47

- -~~r-
....e .. - - --- --

~~~ _____a

I — .~~~ ~~~ —--———- —.-———- 
,
~~~~~~~~~ —.------—-.--—- — 

-

J _.I,,114.,_.____
—_ I ~~~~~~~~~~~~~~~~~~~~

_ __ -
-

Considering four-weight (quad) error patterns , further runs
showed that 490 out of the 84,035 possible four-weight error patterns
(0.6%) corrupting any transmitted codeword result in a decoded list
of 35 possibly transmitted codcwords. 62,965 (75% of all) quad
error patterns map any transmitted codeword distance 3 away from 7 or
fewer valid codewords (all incorrect). As shown in Figure 3-2,
19,845 (24% of all) quad error patterns map any transmitted codeword
dIstance 1 away from 1 valid codeword. These last two cases appear
as “proper decodes” from the decoder’s point of view, but are in
fact incorrect.

48

F- —
I- ~~~~~~~~~~~~~~~ ~~

~1i~ ~~ -. —

— --———--

SECTION 4

CONCLUSIONS

The design , cons truc tion , and testing of the microprocessor-
based (7 ,3) R-S decoder resulted in many interesting conclusions .
Analysis of the decoder’s performance ena bles simple conclus ions to
be made relative to the decoding rates obtainable and the decoding
delay . Conc lus ions are also drawn re lative to system lessons learned,
testing error coding systems, and improving decoder performance.

4.1 SYSTEM IMPL I CATIONS

If this simple (7,3) R-S decoder were to be used as a design re-
source in the engineering of a comunications channel , its operation
would certainly affect the reliability and performance of that channel .
System design aspects , such as buffering requ i rements , depend to a
large extent on the decoding rate and delay of the decoder, while de-
coding rates obtainabl e affect channel rates and consequently throughput.

4.1.1 Average Decoding Rate

Since the decoding time per codeword is dependent on the partic-
ular error/erasure pattern that corrupts the word, the decoding rate
will vary. Figure 4-1 shows the average decoding rate of the (7,3)
R-S decoder vs. symbol error rate. The abscissa of the graph is de-
fined in both information symbols per second and Information bits per
second, the latter being three times the former since one eight-level
symbol is the equivalent of three bits of information. Assuming that
the (7,3) R-S decoder Is matched to an m-ary (8-level) channel , the
ord ina te rel ates the random error ra te on the channel rela tive to the
independent transmission of symbols. The dashed line on the graph is

49

______________________________ -- ~~~~~~~~~~~~ — -i- ’ .,- - - - ---~~.# — —-~-- -

W~~~~~~ p~~~- - - - - - -- - — — - . ——--
,

..... .~~~ —

10P4033S/S.L19 O.~NZ)
ILV~ 0N100330 38V~ 3AV

2 2 8 8 8 8 8 8 8 8 8
DI 10 • 0 DI I 10 • o N

• ~ I 4 DI 0 10
4 4 10 10 10 WI WI WI 01 w N

T I I I I I I I I I • I I —

-

~~~~~~~ Id

I 0
0I _
I
0 ILl

Id
4 )-

10

0
0

U)
DI

* -
10
In.

~ I I I I I I I ~~~~~ 9
g § g ~ ~~~~
It wi w -

~ 2 0 ~

( 33S/S1O8WAS O~ NI)
3LY~~ OPdIOO33O 3OVd~~~AV

50

W ..
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

— 
~~~~~~~~~ 

— -

~~~
r,.- — - -•--

~
----‘ w- ‘

~~~~~ 
— — - -- ——-—-—-----—~~~ --

an asymptote of 14,354 symbol/sec. In 2.3.1 and 3.2.1 It was shown
that 209 microseconds Is the minimum decoding time obtained when
only one table fetch and compare operation Is necessary. Therefore,
the reciprocal of this time (i.e., 1/209 x lo 6) represents the
maximum decoding rate obtainable In all codewords were received cor-
rectly or if correctabl e error patterns are confined to check symbol
positions only. The curve relating the average decoding rate for a

-- gi ven symbol error rate was calculated via equation (7):

R (SER) ~oe +
~l E c +

~2E , c + ~lE,m
+

~2 E m + ~3E (7)
209 x l0 67 x 10 134 x 10

where R (S E R) = average decoding rate at some specific
symbol error rate (SER)

~iE = the probabil i t y of receiving a codeword
wi th i errors at the spec if ied SER

= (
~

) SER i (1-SER)7 1

~iE ~
= the probability of receiving a codeword
with I errors, all of which are confined
to the chec k symbol positions

~iE = the probability of receiving a codeword
wi th i errors , one or more of wh ich are
located at a message symbol l ocation . -

As the curve shows for SER5 better than approximately 10 2 most sym-
bols are received correctly and the rate asymptotical ly approaches
the correct codeword recognition limit. It must be remembered that

these rates were obtained using a 1 MHz CPu chip. A 2 MHz 6800B CPU
chip would result in a doubling of these rates.

51

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.~~~ -

-
—. ~~ - ‘~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.-—- ~~—-- --•- --- —----—---——---_~~~~.

4.1.2 Decoder Delay

Like the instantaneous decoding rate, the delay inherent in the
operation of the (7 ,3) R-S decoder varies with the error/erasure
pattern. Obviously, the longest decoding delay results from a com-
plete codeword table search and is approximately 134 milliseconds .
The probability that a correctable error pattern of one or two errors
will corrupt message symbols (hence the table entry point) is
approximately (from equation 7)

+
~2E,m

(8)

Assuming that this corruption always results in an entire table
search , equation (8) is a loose upper bound on the probablity of this
event. For example the likelihood of this event for symbol error
rates below io 2 is less than .029 due to correctable error patterns ,
and ft is less than .000034 for uncorrectable error patterns.

Good system design dictates the incorporation of a codeword buf-
fer. The width of the codeword buffer will , in generul , be seven
symbols or 21 bi ts, while the depth is dependent on decoder delay and
channel rate. Choosing a particular channel transmission rate, the
channe l ‘s information-transfe r effici ency , i .e., the throughput , can
be calcu1ated~

5
~. Many factors Infl uence a channel ’s throughput rate,

such as the channel ‘s transm iss ion rate, the amount of overhead sym-
bols dedicated to control synchronization and coding redundancy ,
channel error rate , and block length . Ideally, the decoding rates of
Figure 4.1 for known channel error conditions coul d be used to set
the channel transmission rate. Consequently, enough buffer depth mus t
then be designed to hold received codewords duri ng intervals of de-
coding that are longer than the reciprocal of the instantaneous trans-
mission (decoding) rate. Without resorting to a detailed queueing

52

F- W - - -

analysis, a heuristically engineered buffer design can be proposed.
For example, at a symbol error rate of io-2 , the average decoding
rate shown in Figure 4-1 is approxImately 13,800 information symbols
per second (i.e., 4600 codewords per second or 41.4 Kb/s). If this
Is set as the channel transmission rate, then the buffe r must be
large enough to hold received codewords during the longest decode
time - 135 milliseconds for a complete table search. This estab-
lishes a buffer length of (134 x l0~~)(460O) 616 codewords of
21 bIts/codeword, or 1.6 K bytes. The probability of a complete
table search (P~~5) from (8) is .029. The probabihty of buffer
overflow due to two complete table searches in a sequence of 616 code-
words is

~

6

~

6

~~~CtS 
(l_P cts)~

64 2.264 x io .6 . Conservatively design-
in g a buffer twice this estimate size or 3.2K bytes would provide
an extremely low probability of over/under-flow and would at the

— same time not become a hardware burden. Where hardware constraints
are critical and information rate is not, setting the transmission
rate lower than the decoding rate provides the opportunity for a
tradeoff between buffer size and throughput as well as extended
performance with large r codes and/or list decoding techniques .

4.2 LESSONS LEARNED

From the construction and testing of the sImple (7 ,3) R-S
decoder a number of lessons learned and conclusions can be related:

1. 8-bit MOS microprocessors can do error coding/decoding
operations at reasonabl e decoding rates wi th
minimum hardware if small block codes are utilized .
The key to ut i l iz ing low-cost 8-bit MOS microprocessors
for error coding lies In restricting the chosen code to a

53

F- - 

- 

- - - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ - -- 


F’

short block length , and using simple decoding

L algorithms with table-look up procedures wherever
possible. As future generations of microprocessors
become more powerfu l , these restrictions can un-
doubtedly be relaxed.

2. in representing q-ary code symbols in binary-based
microprocessor designs , codeword representation is
crit ical in order to minim ize decoding time. The
binary representation of q-ary code symbols must be
designed to make maximum use of the microprocessor ’s
instruction set.

3. Simple decoding algorithms wi l l achieve minimum
execution time if i n — l i n e code (i.e., no subrou tine
calls , loops, etc.) is extensively used in critical
portions of the program. This results in a tradeoff
between memory storage requirements and execution
speed, a viable alternative given the current trend
of increasing memory densities and lower per/bit
costs of semiconductor RAM/ROM.

4. Using a maximum-likelihood decoding algori thm with
table look-up , sma rt table searc h procedures mus t
be imp lemented to speed table search times. Using
certain symbols of systematic or nonsystematic
codes , table entry poInts can be calculated that
resul t in hi ghl y possible minimum table searc h
time .

5. Having decoded to a valid codeword, faster messa ge
extraction Is facilitated by the use of systematic
codewords obviating the necessity of a final poly-
nomial divide operation. Al ternatively, when using

54

— e ~~~
—

~~~~~
-
~~~

— — - —-—-
~~~ -—.— - ---~~~~-—~~~————-- - — —--——--— —- —---—-~~ —— — —- - —.— —



non-systematic codes memory storage for the corres-
ponding message symbols can be traded off against
the added execution time of a po lynomial divide
operation.

6. ‘(he instruction set of a microprocessor establishes ,
the capability of that CPU to efficiently perform a
given decoding algorithm. The lack of or incl us ion
of certain instructions may dictate an entirely dif-
ferent coding approach for the algorithm resulting
in radically different execution times and memory
storage requirements.

7. The amount of data and program storage space neces-
sary to impl ement the (7 ,3) R-S decoder in a multi -
chip microprocessor configuration easily lends
Itself to an economical design utilizing some of the
state-of-the-art one chip microcomputers such as the -:

MUSTEK 3870.

4.3 ERROR CODING SYSTEM TESTING

Experi ence gai ned In testing the microprocessor-based (7,3) R-S
decoder has provided the basis for a genera l test methodol ogy for
error coding systems. Whereas exhaustive error/erasure pattern tests

on the (7,3) decoder were feasible due to the short block lengths, and
the small number of bits per symbol , such tests would be prohibitively
long runnin g on larger codes . In fact , even for the (7, 3) R-S decoder
error/erasure patterns larger than three symbols were not run due to
the size of the combination set (e.g.,  823,543 for 6-symbol ) error/
erasure patterns). It may, however, in many instances be feasible to
exhaustively run all guaranteed correctable error/erasure patterns. From

55

- -~ ._, - ‘ - -

F- ~~~ X~~~~~~~~~~ - -~~~~~~~~~~~ -_ _ _  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


such tests correct decoding could be verified for a bounded distance
decoder, and statistical data on decoding times could be gathered.
For longer codes and more sophisticated decoding methods, some sort
of Monte Carlo random simulation testing makes the most sense. With
a statistically verifiabl e Monte Carlo exercising program, decoder
performance coul d be qu ickly assessed un der varyi ng message source
and error environment conditions. Complete decoder evalua tion is
d i f f i cu l t without knowledge of the particulars of the system in which
it will be employed. Lacking this information, assumptions
can be made relative to desired channel transmission rates, error
conditions , synchronization and contro l overhead schemes, to enabl e
the calcula tion of total system throughput. From these preliminary
findings the assumed parameters, as well as the error coding para-
meters, can be varied to achieve the desired system performance.
Decoder test data is invaluable in this respect ensuring a certain
level of performance from the stand-a1~ne decoder.

4.4 (7,3) R—S DECODER IMPRO VEMENTS

While analyzing the test results of the (7,3) R—S decoder, it
becomes apparent that one design assumption led to a slight bias-
ing of the decode times. As reported in 3.2.1 , this event arises from
codeword table entry point calculations using erased symbols. It was
stated that a soft-decision demodulator would pass code symbol esti-
mates to the decoder along with a confidence measure, which in the
simplest case is an erased/not-erased indicator. The (7,3) R-S de-
coder as tested, however , does not quite approx imate this opera tion.
The problem comes about from the fact that the operator- (or random
generator) entered codeword erased symbols are not corrupted, but are

passed unchanged to the table entry point routine. This biases the
decoding times, since the correct table entry usually results. The

56

.
~~~ F-

~ 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

~~~~~~~~~~~ 
— -.-

~~~~
.

~~
— -----— -- - - -. ---._--

~~~~~~~
. --



decoder operation should be changed to corrupt these erased symbols
for a more accurate simulation. Having done this, the danger then
exists that if the “ best guess ” erased symbol is a message symbol it
may cause the table entry point routine to start table search “beyond”
the correct codeword resulting in abnormally long table searches.
Fortunately, there is an easy “algorithm fix” for this eventuality.
If a declared erased symbol is the least significant or next to least
significant message symbol (symbols 4 and 5, Figure 2-5), the code-
word table entry point routine shall replace the best-guess value of
these symbols wi th zero. This will ensure that the table entry point
is not beyond the correct codeword location If the most significant
message symbo l is correct. Setting symbol 4 = 0 results in a worse
case search of 8 codewords. Likewise, symbol 5 = 0 may result in a
search of up to 64 codewords. Unfortunately, this fix will not re-
sult in any average time savings if applied to message symbol 6.
This “fix” is, In essence, making use of the erasure symbol informa-
tion (I.e., -the location of a possible symbol error Is known). Using

this information, the algorithm can ensure that maximum table searches
wi l l not occur for error patterns satisfying the th ree following con-
ditions :

1. A correctable error/erasure pattern is Involved .

2. Message symbol 6 is not erased nor in error.

3. Message symbol 5 and/or 4 may be erased.

Additionally , this procedure may be employed dependent on other soft-
decision Information from the demodulator (e.g., received S/N ratio)
indicating the degree of confidence In the declared symbol .

Recent work on simple (7,3) R-S decoder Implementations done by
others on Project 7010 and documented elsewhere has resulted in

57

- ~~~~~ ~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~ 
-

-~~~ ‘~~ F- — -—-~~ ~~~~~~~~~~ ~~~~~~~ 
____— w ’~~~

’
~~ 

— - ‘v~ —— —— - ~~~— --.- - _ 
— —



considerable improvement in decoder operation. By using multiple
codetables , minimum symbol storage,and simple finite field arithmetic
operati ons , decoder performance can be dramatically Improved over
the results reported on here .

58



LIST OF REFERENCES

1. Skoog, E. N. , “Error Correc tion Codi ng with NM OS Microprocessors ,
Concepts”, ESD-TR-79-l25, Vol . I, Electronic Systems Division ,
AFSC, Hanscom AFB , MA , May 1979.

2. Peterson, W. W., an d We l son , Jr. , E. J., Error-Correcting Codes,
The MIT Press , 1972, pp. 52-56.

3. Knuth , D. E., The Art of Computer Programing, Volume 2, Semi-
numerical Algorithm s, John Wiley , 1975, pp. 20—32.

4. Berlekamp , E. R . , Algebraic Coding Theory, McGraw-Hill , 1968,
pp. 2.

5. Boustead , .C. N. and Mehta , K., “Gettin g Pea k Performance on a
Data Channel” , Data Coninunications, Volume 3, No. 2, Jul y/Augus t
1974, pp. 39-47.

___ _

~

.i


